Integrin Signaling in Joint Development, Homeostasis, and Osteoarthritis - Nature Reviews Rheumatology

ReachMD Healthcare Image

07/17/2024

  1. Allen, K. D., Thoma, L. M. & Golightly, Y. M. Epidemiology of osteoarthritis. Osteoarthr. Cartil.30, 184–195 (2022).

    ArticleCAS Google Scholar

  2. Loeser, R. F., Goldring, S. R., Scanzelllo, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum.64, 1697–1707 (2012).

    ArticlePubMedPubMed Central Google Scholar

  3. Katz, J. N., Arant, K. R. & Loeser, R. F. Diagnosis and treatment of hip and knee osteoarthritis: a review. J. Am. Med. Assoc.325, 568–578 (2021).

    ArticleCAS Google Scholar

  4. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet393, 1745–1759 (2019).

    ArticleCASPubMed Google Scholar

  5. Safiri, S. et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis.79, 819–828 (2020).

    ArticlePubMed Google Scholar

  6. Hunter, D. J. Pharmacologic therapy for osteoarthritis-the era of disease modification. Nat. Rev. Rheumatol.7, 13–22 (2011).

    ArticleCASPubMed Google Scholar

  7. Kolasinski, S. L. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol.72, 220–233 (2020).

    ArticlePubMedPubMed Central Google Scholar

  8. Oo, W. M. & Hunter, D. J. Repurposed and investigational disease-modifying drugs in osteoarthritis (DMOADs). Ther. Adv. Musculoskelet. Dis.14, 1759720X221090297 (2022).

    ArticlePubMedPubMed Central Google Scholar

  9. Lotz, M. & Loeser, R. F. Effects of aging on articular cartilage homeostasis. Bone51, 241–248 (2012).

    ArticleCASPubMedPubMed Central Google Scholar

  10. Goldring, M. B. & Marcu, K. B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther.11, 224 (2009).

    ArticlePubMedPubMed Central Google Scholar

  11. Lories, R. J. U. Joint homeostasis, restoration, and remodeling in osteoarthritis. Best Pract. Res. Clin. Rheumatol.22, 209–220 (2008).

    ArticleCASPubMed Google Scholar

  12. Lotz, M. K. & Caramés, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat. Rev. Rheumatol.7, 579–587 (2011).

    ArticleCASPubMedPubMed Central Google Scholar

  13. Goldring, M. B. The role of the chondrocyte in osteoarthritis. Arthritis Rheum.43, 1916–1926 (2000).

    ArticleCASPubMed Google Scholar

  14. Saito, T. et al. Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat. Med.16, 678–686 (2010).

    ArticleCASPubMed Google Scholar

  15. Dreier, R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res. Ther.12, 216 (2010).

    ArticlePubMedPubMed Central Google Scholar

  16. Hosaka, Y. et al. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc. Natl Acad. Sci. USA110, 1875–1880 (2013).

    ArticleCASPubMedPubMed Central Google Scholar

  17. Goldring, S. R. Role of bone in osteoarthritis pathogenesis. Med. Clin. North Am.93, 25–35 (2009).

    ArticlePubMed Google Scholar

  18. Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol.8, 665–673 (2012).

    ArticleCASPubMed Google Scholar

  19. Goldring, S. R. & Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage bone crosstalk. Nat. Rev. Rheumatol.12, 632–644 (2016).

    ArticlePubMed Google Scholar

  20. Ricard-Blum, S. & Salza, R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp. Dermatol.23, 457–463 (2014).

    ArticleCASPubMed Google Scholar

  21. Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E. & Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol.18, 258–275 (2022).

    ArticlePubMedPubMed Central Google Scholar

  22. Scanzello, C. R. & Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone51, 249–257 (2012).

    ArticleCASPubMedPubMed Central Google Scholar

  23. Guilak, F., Nims, R. J., Dicks, A., Wu, C. L. & Meulenbelt, I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol.71–72, 40–50 (2018).

    ArticlePubMedPubMed Central Google Scholar

  24. Eyre, D. Articular cartilage and changes in arthritis: collagen of articular cartilage. Arthritis Res. Ther.4, 30–35 (2002).

    ArticleCAS Google Scholar

  25. Knudson, W., Ishizuka, S., Terabe, K., Askew, E. B. & Knudson, C. B. The pericellular hyaluronan of articular chondrocytes. Matrix Biol.78–79, 32–46 (2019).

    ArticlePubMed Google Scholar

  26. Roughley, P. J. & Mort, J. S. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop.1, 8 (2014).

    ArticlePubMedPubMed Central Google Scholar

  27. Kiani, C., Chen, L., Wu, Y. J., Yee, A. J. & Yang, B. B. Structure and function of aggrecan. Cell Res.12, 19–32 (2002).

    ArticlePubMed Google Scholar

  28. Hodgkinson, T., Kelly, D. C., Curtin, C. M. & O’Brien, F. J. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat. Rev. Rheumatol.18, 67–84 (2022).

    ArticlePubMed Google Scholar

  29. Alexopoulos, L. G., Haider, M. A., Vail, T. P. & Guilak, F. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. J. Biomech. Eng.125, 323–333 (2003).

    ArticlePubMed Google Scholar

  30. Peng, Z. et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials268, 120555 (2021).

    ArticleCASPubMed Google Scholar

  31. Loeser, R. F. Integrins and chondrocyte–matrix interactions in articular cartilage. Matrix Biol.39, 11–16 (2014).

    ArticleCASPubMedPubMed Central Google Scholar

  32. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol.15, 786–801 (2014).

    ArticleCASPubMedPubMed Central Google Scholar

  33. Larsen, M., Artym, V. V., Green, J. A. & Yamada, K. M. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr. Opin. Cell Biol.18, 463–471 (2006).

    ArticleCASPubMed Google Scholar

  34. Wu, W. et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum.46, 2087–2094 (2002).

    ArticleCASPubMed Google Scholar

  35. Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil.17, 971–979 (2009).

    ArticleCAS Google Scholar

  36. Patel, D. F. et al. An extracellular matrix fragment drives epithelial remodeling and airway hyperresponsiveness. Sci. Transl. Med.10, eaaq0693 (2018).

    ArticlePubMedPubMed Central Google Scholar

  37. Hahn, C. S. et al. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. Sci. Adv.1, e1500175 (2015).

    ArticlePubMedPubMed Central Google Scholar

  38. Jariwala, N. et al. Matrikines as mediators of tissue remodelling. Adv. Drug Deliv. Rev.185, 114240 (2022).

    ArticleCASPubMed Google Scholar

  39. Gaggar, A. & Weathington, N. Bioactive extracellular matrix fragments in lung health and disease. J. Clin. Invest.126, 3176–3184 (2016).

    ArticlePubMedPubMed Central Google Scholar

  40. Miao, M. Z. et al. Redox-active endosomes mediate α5β1 integrin signaling and promote chondrocyte matrix metalloproteinase production in osteoarthritis. Sci. Signal.16, eadf8299 (2023).

    ArticleCASPubMed Google Scholar

  41. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol.12, 412–420 (2016).

    ArticleCASPubMedPubMed Central Google Scholar

  42. Heinegård, D. & Saxne, T. The role of the cartilage matrix in osteoarthritis. Nat. Rev. Rheumatol.7, 50–56 (2011).

    ArticlePubMed Google Scholar

  43. Pap, T. & Korb-Pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis — two unequal siblings. Nat. Rev. Rheumatol.11, 606–615 (2015).

    ArticlePubMed Google Scholar

  44. Gerwin, N. et al. Angiopoietin-like 3-derivative LNA043 for cartilage regeneration in osteoarthritis: a randomized phase 1 trial. Nat. Med.28, 2633–2645 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  45. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell110, 673–687 (2002).

    ArticleCASPubMed Google Scholar

  46. Anthis, N. J. & Campbell, I. D. The tail of integrin activation. Trends Biochem. Sci.36, 191–198 (2011).

    ArticleCASPubMedPubMed Central Google Scholar

  47. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science285, 1028–1033 (1999).

    ArticleCASPubMed Google Scholar

  48. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell110, 599–611 (2002).

    ArticleCASPubMed Google Scholar

  49. Shimaoka, M., Takagi, J. & Springer, T. A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct.31, 485–516 (2002).

    ArticleCASPubMed Google Scholar

  50. Xiao, T., Takagi, J., Coller, B. S., Wang, J. H. & Springer, T. A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature432, 59–67 (2004).

    ArticleCASPubMedPubMed Central Google Scholar

  51. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol.3, a004994 (2011).

    ArticlePubMedPubMed Central Google Scholar

  52. Li, J. et al. Conformational equilibria and intrinsic affinities define integrin activation. EMBO J.36, 629–645 (2017).

    ArticleCASPubMedPubMed Central Google Scholar

  53. Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science294, 339–345 (2001).

    ArticleCASPubMedPubMed Central Google Scholar

  54. Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science296, 151–155 (2002).

    ArticleCASPubMed Google Scholar

  55. Sun, Z., Costell, M. & Fässler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol.21, 25–31 (2019).

    ArticleCASPubMed Google Scholar

  56. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol.11, 288–300 (2010).

    ArticleCASPubMedPubMed Central Google Scholar

  57. Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol.14, 503–517 (2013).

    ArticleCASPubMedPubMed Central Google Scholar

  58. Miyamoto, S., Teramoto, H., Gutkind, J. S. & Yamada, K. M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol.135, 1633–1642 (1996).

    ArticleCASPubMed Google Scholar

  59. Yamada, K. M. & Even-Ram, S. Integrin regulation of growth factor receptors. Nat. Cell Biol.4, E75–E76 (2002).

    ArticleCASPubMed Google Scholar

  60. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell69, 11–25 (1992).

    ArticleCASPubMed Google Scholar

  61. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane extracellular matrix — cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol.2, 793–805 (2001).

    ArticleCASPubMed Google Scholar

  62. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1. Cell101, 47–56 (2000).

    ArticleCASPubMed Google Scholar

  63. Xu, Y. et al. Multiple binding sites in collagen type I for the integrins α1β1 and α2β1. J. Biol. Chem.275, 38981–38989 (2000).

    ArticleCASPubMed Google Scholar

  64. Akiyama, S. K., Yamada, S. S., Yamada, K. M. & LaFlamme, S. E. Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J. Biol. Chem.269, 15961–15964 (1994).

    ArticleCASPubMed Google Scholar

  65. Schaller, M. D. et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell. Biol.14, 1680–1688 (1994).

    CASPubMedPubMed Central Google Scholar

  66. Hughes, P. E. & Pfaff, M. Integrin affinity modulation. Trends Cell Biol.8, 359–364 (1998).

    ArticleCASPubMed Google Scholar

  67. Ginsberg, M. H., Du, X. & Plow, E. F. Inside-out integrin signalling. Curr. Opin. Cell Biol.4, 766–771 (1992).

    ArticleCASPubMed Google Scholar

  68. Lee, J. O., Bankston, L. A., Robert, C. & Liddington, M. A. A. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure3, 1333–1340 (1995).

    ArticleCASPubMed Google Scholar

  69. Lee, J. O., Rieu, P., Arnaout, M. A. & Liddington, R. Crystal structure of the A domain from the a subunit of integrin CR3 (CD11 b/CD18). Cell80, 631–638 (1995).

    ArticleCASPubMed Google Scholar

  70. Burridge, K. & Connell, L. A new protein of adhesion plaques and ruffling membranes. J. Cell Biol.97, 359–367 (1983).

    ArticleCASPubMed Google Scholar

  71. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science302, 103–106 (2003).

    ArticleCASPubMed Google Scholar

  72. Saltel, F. et al. New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control β3-integrin clustering. J. Cell Biol.187, 715–731 (2009).

    ArticleCASPubMedPubMed Central Google Scholar

  73. Chinthalapudi, K., Rangarajan, E. S. & Izard, T. The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation. Proc. Natl Acad. Sci. USA115, 10339–10344 (2018).

    ArticleCASPubMedPubMed Central Google Scholar

  74. O’Toole, T. E. et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol.124, 1047–1059 (1994).

    ArticlePubMed Google Scholar

  75. Anthis, N. J. et al. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J.28, 3623–3632 (2009).

    ArticleCASPubMedPubMed Central Google Scholar

  76. Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell128, 171–182 (2007).

    ArticleCASPubMed Google Scholar

  77. Kim, C., Ye, F., Hu, X. & Ginsberg, M. H. Talin activates integrins by altering the topology of the β transmembrane domain. J. Cell Biol.197, 605–611 (2012).

    ArticleCASPubMedPubMed Central Google Scholar

  78. Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science301, 1720–1725 (2003).

    ArticleCASPubMed Google Scholar

  79. Aretz, J., Aziz, M., Strohmeyer, N., Sattler, M. & Fässler, R. Talin and kindlin use integrin tail allostery and direct binding to activate integrins. Nat. Struct. Mol. Biol.30, 1913–1924 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  80. Winograd-Katz, S. E., Fässler, R., Geiger, B. & Legate, K. R. The integrin adhesome: from genes and proteins to human disease. Nat. Rev. Mol. Cell Biol.15, 273–288 (2014).

    ArticleCASPubMed Google Scholar

  81. Kanchanawong, P. & Calderwood, D. A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol.24, 142–161 (2023).

    ArticleCASPubMed Google Scholar

  82. Clark, E. A. & Brugge, J. S. Integrins and signal transduction pathways: the road taken. Science268, 233–239 (1995).

    ArticleCASPubMed Google Scholar

  83. Zaidel-bar, R., Itzkovitz, S., Ma, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nat. Cell Biol.9, 858–867 (2007).

    ArticleCASPubMedPubMed Central Google Scholar

  84. Horton, E. R. et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol.17, 1577–1587 (2015).

    ArticleCASPubMedPubMed Central Google Scholar

  85. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature468, 580–584 (2010).

    ArticleCASPubMedPubMed Central Google Scholar

  86. Tan, S. J. et al. Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds. Sci. Adv.6, eaax0317 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  87. Liu, J. et al. Talin determines the nanoscale architecture of focal adhesions. Proc. Natl Acad. Sci. USA112, E4864–E4873 (2015).

    ArticleCASPubMedPubMed Central Google Scholar

  88. Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science323, 642–644 (2009).

    ArticleCASPubMed Google Scholar

  89. Liu, Y. J. et al. Differential transmission of actin motion within focal adhesions. Science315, 111–115 (2007).

    Article Google Scholar

  90. Zhu, J. et al. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol. Cell32, 849–861 (2008).

    ArticleCASPubMedPubMed Central Google Scholar

  91. Kong, F. et al. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol. Cell49, 1060–1068 (2013).

    ArticleCASPubMedPubMed Central Google Scholar

  92. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol.10, 21–33 (2009).

    ArticleCASPubMed Google Scholar

  93. Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol.131, 791–805 (1995).

    ArticleCASPubMed Google Scholar

  94. Robertson, J. et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat. Commun.6, 6265 (2015).

    ArticleCASPubMed Google Scholar

  95. Kong, F., García, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol.185, 1275–1284 (2009).

    ArticleCASPubMedPubMed Central Google Scholar

  96. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol.18, 540–548 (2016).

    ArticleCASPubMed Google Scholar

  97. Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheet, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature424, 334–337 (2003).

    ArticleCASPubMed Google Scholar

  98. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell171, 1397–1410.e14 (2017).

    ArticleCASPubMed Google Scholar

  99. Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature420, 89–93 (2002).

    ArticleCASPubMed Google Scholar

  100. Martel, V. et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem.276, 21217–21227 (2001).

    ArticleCASPubMed Google Scholar

  101. Wills, R. C. & Hammond, G. R. V. PI(4,5)P2: signaling the plasma membrane. Biochem. J.479, 2311–2325 (2022).

    ArticleCASPubMed Google Scholar

  102. Wood, S. T. et al. Cysteine-mediated redox regulation of cell signaling in chondrocytes stimulated with fibronectin fragments. Arthritis Rheumatol.68, 117–126 (2016).

    ArticleCASPubMedPubMed Central Google Scholar

  103. Khan, I. M. et al. The development of synovial joints. Curr. Top. Dev. Biol.79, 1–36 (2007).

    ArticleCASPubMed Google Scholar

  104. Gao, Y. et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed. Res. Int.2014, 648459 (2014).

    ArticlePubMedPubMed Central Google Scholar

  105. Docheva, D., Popov, C., Alberton, P. & Aszodi, A. Integrin signaling in skeletal development and function. Birth Defects Res. C. Embryo Today102, 13–36 (2014).

    ArticleCASPubMed Google Scholar

  106. Ostergaard, K. et al. Expression of α and β subunits of the integrin superfamily in articular cartilage from macroscopically normal and osteoarthritic human femoral heads. Ann. Rheum. Dis.57, 303–308 (1998).

    ArticleCASPubMedPubMed Central Google Scholar

  107. Loeser, R. F., Carlson, C. S. & McGee, M. P. Expression of β1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Exp. Cell Res.217, 248–257 (1995).

    ArticleCASPubMed Google Scholar

  108. Zemmyo, M., Meharra, E. J., Kühn, K., Creighton-Achermann, L. & Lotz, M. Accelerated, aging-dependent development of osteoarthritis in α1 integrin-deficient mice. Arthritis Rheum.48, 2873–2880 (2003).

    ArticleCASPubMed Google Scholar

  109. Hughes, D. E., Salter, D. M., Dedhar, S. & Simpson, R. Integrin expression in human bone. J. Bone Miner. Res.8, 527–533 (1993).

    ArticleCASPubMed Google Scholar

  110. Shekaran, A. & García, A. J. Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. A96, 261–272 (2011).

    ArticlePubMed Google Scholar

  111. Gronthos, S., Stewart, K., Graves, S. E., Hay, S. & Simmons, P. J. Integrin expression and function on human osteoblast-like cells. J. Bone Miner. Res.12, 1189–1197 (1997).

    ArticleCASPubMed Google Scholar

  112. Duong, L. T., Lakkakorpi, P., Nakamura, I. & Rodan, G. A. Integrins and signaling in osteoclast function. Matrix Biol.19, 97–105 (2000).

    ArticleCASPubMed Google Scholar

  113. Prasadam, I. et al. Impact of extracellular matrix derived from osteoarthritis subchondral bone osteoblasts on osteocytes: role of integrin β1 and focal adhesion kinase signaling cues. Arthritis Res. Ther.15, R150 (2013).

    ArticlePubMedPubMed Central Google Scholar

  114. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol.12, 580–592 (2016).

    ArticleCASPubMedPubMed Central Google Scholar

  115. Konttinen, Y. T. et al. Expression of laminins and their integrin receptors in different conditions of synovial membrane and synovial membrane-like interface tissue. Ann. Rheum. Dis.58, 683–690 (1999).

    ArticleCASPubMedPubMed Central Google Scholar

  116. Korkusuz, P., Dagdeviren, A., Eksioglu, F. & Ors, U. Immunohistological analysis of normal and osteoarthritic human synovial tissue. Bull. Hosp. Jt Dis.63, 63–69 (2005).

    PubMed Google Scholar

  117. Rinaldi, N. et al. Increased expression of integrins on fibroblast-like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Ann. Rheum. Dis.56, 45–51 (1997).

    ArticleCASPubMedPubMed Central Google Scholar

  118. Shahrara, S., Castro-Rueda, H. P., Haines, G. K. & Koch, A. E. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res. Ther.9, R112 (2007).

    ArticlePubMedPubMed Central Google Scholar

  119. Schedel, J. et al. Differential adherence of osteoarthritis and rheumatoid arthritis synovial fibroblasts to cartilage and bone matrix proteins and its implication for osteoarthritis pathogenesis. Scand. J. Immunol.60, 514–523 (2004).

    ArticleCASPubMed Google Scholar

  120. Daley, W. P. & Yamada, K. M. ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr. Opin. Genet. Dev.23, 408–414 (2013).

    ArticleCASPubMedPubMed Central Google Scholar

  121. Cruz Walma, D. A. & Yamada, K. M. The extracellular matrix in development. Development147, dev175596 (2020).

    Article Google Scholar

  122. Soul, J., Barter, M. J., Little, C. B. & Young, D. A. OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals. Ann. Rheum. Dis.80, 376–383 (2021).

    ArticleCASPubMed Google Scholar

  123. Fang, H. & Beier, F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat. Rev. Rheumatol.10, 413–421 (2014).

    ArticlePubMed Google Scholar

  124. Candela, M. E. et al. Alpha 5 integrin mediates osteoarthritic changes in mouse knee joints. PLoS ONE11, e0156783 (2016).

    ArticlePubMedPubMed Central Google Scholar

  125. Bengtsson, T. et al. Loss of α10β1 integrin expression leads to moderate dysfunction of growth plate chondrocytes. J. Cell Sci.118, 929–936 (2005).

    ArticleCASPubMed Google Scholar

  126. Aszodi, A., Hunziker, E. B., Brakebusch, C. & Fässler, R. β1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev.17, 2465–2479 (2003).

    ArticleCASPubMedPubMed Central Google Scholar

  127. Raducanu, A., Hunziker, E. B., Drosse, I. & Aszédi, A. β1 integrin deficiency results in multiple abnormalities of the knee joint. J. Biol. Chem.284, 23780–23792 (2009).

    ArticleCASPubMedPubMed Central Google Scholar

  128. Grashoff, C., Aszódi, A., Sakai, T., Hunziker, E. B. & Fässler, R. Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep.4, 432–438 (2003).

    ArticleCASPubMedPubMed Central Google Scholar

  129. Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol.162, 139–148 (2003).

    ArticleCASPubMedPubMed Central Google Scholar

  130. Qu, M. et al. Pip5k1c loss in chondrocytes causes spontaneous osteoarthritic lesions in aged mice. Aging Dis.14, 502–514 (2023).

    PubMedPubMed Central Google Scholar

  131. Wu, X. et al. Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis. Nat. Aging2, 332–347 (2022).

    ArticleCASPubMed Google Scholar

  132. Lai, Y. et al. Kindlin-2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice. Int. J. Oral. Sci.14, 33 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  133. Wu, C. et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat. Commun.6, 7531 (2015).

    ArticlePubMed Google Scholar

  134. Swingler, T. E. et al. Degradome expression profiling in human articular cartilage. Arthritis Res. Ther.11, R96 (2009).

    ArticlePubMedPubMed Central Google Scholar

  135. Rydén, M. et al. Identification and quantification of degradome components in human synovial fluid reveals an increased proteolytic activity in knee osteoarthritis patients vs controls. Proteomics23, e2300040 (2023).

    ArticlePubMed Google Scholar

  136. Bhutada, S. et al. Forward and reverse degradomics defines the proteolytic landscape of human knee osteoarthritic cartilage and the role of the serine protease HtrA1. Osteoarthr. Cartil.30, 1091–1102 (2022).

    ArticleCAS Google Scholar

  137. Rapp, A. E. & Zaucke, F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am. J. Physiol. Cell Physiol.324, C377–C394 (2023).

    ArticleCASPubMed Google Scholar

  138. Ricard-Blum, S. & Vallet, S. D. Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol.75–76, 170–189 (2019).

    ArticlePubMed Google Scholar

  139. Tuckwell, D. S., Ayad, S., Grant, M. E., Takigawa, M. & Humphries, M. J. Conformation dependence of integrin-type II collagen binding Inability of collagen peptides to support α2β1 binding, and mediation of adhesion to denatured collagen by a novel α5β1-fibronectin bridge. J. Cell Sci.107, 993–1005 (1994).

    ArticleCASPubMed Google Scholar

  140. Guilak, F. et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N. Y. Acad. Sci.1068, 498–512 (2006).

    ArticleCASPubMed Google Scholar

  141. Wilusz, R. E., Sanchez-Adams, J. & Guilak, F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol.39, 25–32 (2014).

    ArticleCASPubMed Google Scholar

  142. Sparding, N. et al. Endotrophin, a collagen type VI-derived matrikine, reflects the degree of renal fibrosis in patients with IgA nephropathy and in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant.37, 1099–1108 (2022).

    ArticleCASPubMed Google Scholar

  143. Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest.122, 4243–4256 (2012).

    ArticleCASPubMedPubMed Central Google Scholar

  144. Pankov, R. & Yamada, K. M. Fibronectin at a glance. J. Cell Sci.115, 3861–3863 (2002).

    ArticleCASPubMed Google Scholar

  145. Xie, D., Meyers, R. & Homandberg, G. A. Fibronectin fragments in osteoarthritic synovial fluid. J. Rheumatol.19, 1448–1452 (1992).

    CASPubMed Google Scholar

  146. Homandberg, G. A., Wen, C. & Hui, F. Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthr. Cartil.6, 231–244 (1998).

    ArticleCAS Google Scholar

  147. Barilla, M. L. & Carsons, S. E. Fibronectin fragments and their role in inflammatory arthritis. Semin. Arthritis Rheum.29, 252–265 (2000).

    ArticleCASPubMed Google Scholar

  148. Zack, M. D. et al. Identification of fibronectin neoepitopes present in human osteoarthritic cartilage. Arthritis Rheum.54, 2912–2922 (2006).

    ArticleCASPubMed Google Scholar

  149. Zhang, X., Chen, C. T., Bhargava, M. & Torzilli, P. A. A comparative study of fibronectin cleavage by MMP-1, -3, -13, and -14. Cartilage3, 267–277 (2012).

    ArticlePubMedPubMed Central Google Scholar

  150. Zack, M. D. et al. ADAM-8 isolated from human osteoarthritic chondrocytes cleaves fibronectin at Ala271. Arthritis Rheum.60, 2704–2713 (2009).

    ArticleCASPubMed Google Scholar

  151. Sofat, N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int. J. Exp. Pathol.90, 463–479 (2009).

    ArticleCASPubMedPubMed Central Google Scholar

  152. Pérez-García, S. et al. Profile of matrix-remodeling proteinases in osteoarthritis: impact of fibronectin. Cells9, 40 (2020).

    Article Google Scholar

  153. Homandberg, G. A., Costa, V. & Wen, C. Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthr. Cartil.10, 938–949 (2002).

    ArticleCAS Google Scholar

  154. Midwood, K. S., Chiquet, M., Tucker, R. P. & Orend, G. Tenascin-C at a glance. J. Cell Sci.129, 4321–4327 (2016).

    ArticleCASPubMed Google Scholar

  155. Tucker, R. P. & Chiquet-Ehrismann, R. Tenascin-C: its functions as an integrin ligand. Int. J. Biochem. Cell Biol.65, 165–168 (2015).

    ArticleCASPubMed Google Scholar

  156. Chiquet-Ehrismann, R. & Tucker, R. P. Tenascins and the importance of adhesion modulation. Cold Spring Harb. Perspect. Biol.3, a004960 (2011).

    ArticlePubMedPubMed Central Google Scholar

  157. Patel, L. et al. Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage. BMC Musculoskelet. Disord.12, 164 (2011).

    ArticleCASPubMedPubMed Central Google Scholar

  158. Sofat, N. et al. Tenascin-C fragments are endogenous inducers of cartilage matrix degradation. Rheumatol. Int.32, 2809–2817 (2012).

    ArticleCASPubMed Google Scholar

  159. Hasegawa, M., Yoshida, T. & Sudo, A. Tenascin-C in osteoarthritis and rheumatoid arthritis. Front. Immunol.11, 577015 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  160. Hasegawa M et al. Tenascin-C concentration in synovial fluid correlates with radiographic progression of knee osteoarthritis. J. Rheumatol.31, 2021–2026 (2004).

    PubMed Google Scholar

  161. Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol.42, 11–55 (2015).

    ArticleCASPubMedPubMed Central Google Scholar

  162. Barreto, G. et al. Soluble biglycan: a potential mediator of cartilage degradation in osteoarthritis. Arthritis Res. Ther.17, 379 (2015).

    ArticlePubMedPubMed Central Google Scholar

  163. Monfort, J. et al. Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage site. Arthritis Res. Ther.8, R26 (2006).

    ArticlePubMedPubMed Central Google Scholar

  164. Zhen, E. Y. et al. Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum.58, 2420–2431 (2008).

    ArticleCASPubMed Google Scholar

  165. Haglund, L. et al. Identification and characterization of the integrin α2β1 binding motif in chondroadherin mediating cell attachment. J. Biol. Chem.286, 3925–3934 (2011).

    ArticleCASPubMed Google Scholar

  166. Camper, L., Heinegård, D. & Lundgren-Åkerlund, E. Integrin α2β1 is a receptor for the cartilage matrix protein chondroadherin. J. Cell Biol.138, 1159–1167 (1997).

    ArticleCASPubMedPubMed Central Google Scholar

  167. Akhatib, B. et al. Chondroadherin fragmentation mediated by the protease HTRA1 distinguishes human intervertebral disc degeneration from normal aging. J. Biol. Chem.288, 19280–19287 (2013).

    ArticleCASPubMedPubMed Central Google Scholar

  168. Sengupta, S. et al. Differentiated glioma cell-derived fibromodulin activates integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth. eLife11, e78972 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  169. Acharya, C. et al. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol.37, 102–111 (2014).

    ArticleCASPubMed Google Scholar

  170. Lohmander, L. S., Saxne, T. & Heinegard, D. K. Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann. Rheum. Dis.53, 8–13 (1994).

    ArticleCASPubMedPubMed Central Google Scholar

  171. Åhrman, E. et al. Novel cartilage oligomeric matrix protein (COMP) neoepitopes identified in synovial fluids from patients with joint diseases using affinity chromatography and mass spectrometry. J. Biol. Chem.289, 20908–20916 (2014).

    ArticlePubMedPubMed Central Google Scholar

  172. Neidhart, M. et al. Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br. J. Rheumatol.36, 1151–1160 (1997).

    ArticleCASPubMed Google Scholar

  173. Di Cesare, P. E. et al. Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J. Orthop. Res.14, 946–955 (1996).

    ArticlePubMed Google Scholar

  174. Chen, F. H., Thomas, A. O., Hecht, J. T., Goldring, M. B. & Lawler, J. Cartilage oligomeric matrix protein/thrombospondin 5 supports chondrocyte attachment through interaction with integrins. J. Biol. Chem.280, 32655–32661 (2005).

    ArticleCASPubMed Google Scholar

  175. Kvansakul, M., Adams, J. C. & Hohenester, E. Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J.23, 1223–1233 (2004).

    ArticleCASPubMedPubMed Central Google Scholar

  176. Ciregia, F. et al. Modulation of αVβ6 integrin in osteoarthritis-related synovitis and the interaction with VTN(381–397 a.a.) competing for TGF-β1 activation. Exp. Mol. Med.53, 210–222 (2021).

    ArticleCASPubMedPubMed Central Google Scholar

  177. Carsons, S. E. & Wolf, J. Interaction between synoviocytes and extracellular matrix in vitro. Ann. Rheum. Dis.54, 413–416 (1995).

    ArticleCASPubMedPubMed Central Google Scholar

  178. Forsyth, C. B., Pulai, J. & Loeser, R. F. Fibronectin fragments and blocking antibodies to α2β1 and α5β1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum.46, 2368–2376 (2002).

    ArticleCASPubMed Google Scholar

  179. Del Carlo, M., Schwartz, D., Erickson, E. A. & Loeser, R. F. Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free. Radic. Biol. Med.42, 1350–1358 (2007).

    ArticlePubMedPubMed Central Google Scholar

  180. Pulai, J. I. et al. NF-κB mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. J. Immunol.174, 5781–5788 (2005).

    ArticleCASPubMed Google Scholar

  181. Long, D. L., Willey, J. S. & Loeser, R. F. Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibronectin fragments. Arthritis Rheum.65, 1561–1568 (2013).

    ArticleCASPubMedPubMed Central Google Scholar

  182. Loeser, R. F., Forsyth, C. B., Samarel, A. M. & Im, H. J. Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J. Biol. Chem.278, 24577–24585 (2003).

    ArticleCASPubMed Google Scholar

  183. Obara, M., Kang, M. S. & Yamada, K. M. Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell53, 649–657 (1988).

    ArticleCASPubMed Google Scholar

  184. Aota, S. I., Nomizu, M. & Yamada, K. M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J. Biol. Chem.269, 24756–24761 (1994).

    ArticleCASPubMed Google Scholar

  185. Schumacher, S. et al. Structural insights into integrin α5β1 opening by fibronectin ligand. Sci. Adv.7, eabe9716 (2021).

    ArticleCASPubMedPubMed Central Google Scholar

  186. Reed, K. S. M. et al. Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype. Osteoarthr. Cartil.29, 235–247 (2021).

    ArticleCAS Google Scholar

  187. Thulson, E. et al. 3D chromatin structure in chondrocytes identifies putative osteoarthritis risk genes. Genetics222, iyac141 (2022).

    ArticlePubMedPubMed Central Google Scholar

  188. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol.3, 600–614 (2002).

    ArticleCASPubMed Google Scholar

  189. Sorkin, A. & Von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol.10, 609–622 (2009).

    ArticleCASPubMedPubMed Central Google Scholar

  190. Willette, B. K. A., Zhang, J. F., Zhang, J. & Tsvetanova, N. G. Endosome positioning coordinates spatially selective GPCR signaling. Nat. Chem. Biol.20, 151–161 (2023).

    ArticlePubMedPubMed Central Google Scholar

  191. Chen, Y. G. Endocytic regulation of TGF-β signaling. Cell Res.19, 58–70 (2009).

    ArticlePubMed Google Scholar

  192. Alanko, J. et al. Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol.17, 1412–1421 (2015).

    ArticleCASPubMedPubMed Central Google Scholar

  193. Nader, G. P. F., Ezratty, E. J. & Gundersen, G. G. FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat. Cell Biol.18, 491–503 (2016).

    ArticleCASPubMed Google Scholar

  194. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol.20, 457–473 (2019).

    ArticleCASPubMed Google Scholar

  195. Caswell, P. T., Vadrevu, S. & Norman, J. C. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol.10, 843–853 (2009).

    ArticleCASPubMed Google Scholar

  196. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol.23, 499–515 (2022).

    ArticleCASPubMed Google Scholar

  197. Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol.11, 613–619 (2017).

    ArticleCASPubMedPubMed Central Google Scholar

  198. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol.21, 363–383 (2020).

    ArticleCASPubMed Google Scholar

  199. Oakley, F. D., Abbott, D., Li, Q. & Engelhardt, J. F. Signaling components of redox active endosomes: the redoxosomes. Antioxid. Redox Signal.11, 1313–1333 (2009).

    ArticleCASPubMedPubMed Central Google Scholar

  200. Withofs, N. et al. 18F-FPRGD2 PET/CT imaging of musculoskeletal disorders. Ann. Nucl. Med.29, 839–847 (2015).

    ArticleCASPubMed Google Scholar

  201. Charlier, E. et al. Toward diagnostic relevance of the αVβ5, αVβ3, and αVβ6 integrins in OA: expression within human cartilage and spinal osteophytes. Bone Res.8, 35 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  202. Hua, Q., Knudson, C. B. & Knudson, W. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J. Cell Sci.106, 365–375 (1993).

    ArticleCASPubMed Google Scholar

  203. Embry, J. J. & Knudson, W. G1 domain of aggrecan cointernalizes with hyaluronan via a CD44-mediated mechanism in bovine articular chondrocytes. Arthritis Rheum.48, 3431–3441 (2003).

    ArticleCASPubMed Google Scholar

  204. Silverstein, A. M. et al. Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthr. Cartil.25, 1353–1361 (2017).

    ArticleCAS Google Scholar

  205. Zhen, G. et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat. Commun.12, 1–16 (2021).

    Article Google Scholar

  206. Wang, Q. et al. Dysregulated integrin aVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight4, 1706 (2019).

    Article Google Scholar

  207. Li, K. et al. Tyrosine kinase Fyn promotes osteoarthritis by activating the β-catenin pathway. Ann. Rheum. Dis.77, 935–943 (2018).

    CASPubMed Google Scholar

  208. Sumsuzzman, D. M., Khan, Z. A., Choi, J. & Hong, Y. Assessment of functional roles and therapeutic potential of integrin receptors in osteoarthritis: a systematic review and meta-analysis of preclinical studies. Ageing Res. Rev.81, 101729 (2022).

    ArticleCASPubMed Google Scholar

  209. Maylin, A. B. et al. Genetic abrogation of the fibronectin-α5β1 integrin interaction in articular cartilage aggravates osteoarthritis in mice. PLoS ONE13, e0198559 (2018).

    Article Google Scholar

  210. Song, F. et al. Integrin αVβ3 signaling in the progression of osteoarthritis induced by excessive mechanical stress. Inflammation46, 739–751 (2023).

    ArticleCASPubMed Google Scholar

  211. Lian, C. et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1−SMAD1 interaction. Bone Res7, 8 (2019).

    ArticlePubMedPubMed Central Google Scholar

  212. St Amant, J. et al. Depleting transforming growth factor beta receptor 2 signalling in the cartilage of itga1-null mice attenuates spontaneous knee osteoarthritis. Osteoarthr. Cartil. Open.5, 100399 (2023).

    Article Google Scholar

  213. Shin, S. Y., Pozzi, A., Boyd, S. K. & Clark, A. L. Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor signalling. Osteoarthr. Cartil.24, 1795–1806 (2016).

    ArticleCAS Google Scholar

  214. Cui, Z. et al. Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res10, 58 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  215. Li, T. et al. TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci. Transl. Med.11, eaan2585 (2019).

    ArticleCASPubMedPubMed Central Google Scholar

  216. Tetsunaga, T. et al. Mechanical stretch stimulates integrin αVβ3-mediated collagen expression in human anterior cruciate ligament cells. J. Biomech.42, 2097–2103 (2009).

    ArticlePubMed Google Scholar

  217. Mousavizadeh, R. et al. β1 integrin, ILK and mTOR regulate collagen synthesis in mechanically loaded tendon cells. Sci. Rep.10, 12644 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  218. Wang, D. et al. Tendon-derived extracellular matrix induces mesenchymal stem cell tenogenesis via an integrin/transforming growth factor-β crosstalk-mediated mechanism. FASEB J.34, 8172–8186 (2020).

    ArticleCASPubMed Google Scholar

  219. Moffat, K. L. et al. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl Acad. Sci. USA105, 7947–7952 (2008).

    ArticleCASPubMedPubMed Central Google Scholar

  220. Fleming, B. C., Hulstyn, M. J., Oksendahl, H. L. & Fadale, P. D. Ligament injury, reconstruction and osteoarthritis. Curr. Opin. Orthop.16, 354–362 (2005).

    ArticlePubMedPubMed Central Google Scholar

  221. Dai, B. et al. Blockage of osteopontin-integrin β3 signaling in infrapatellar fat pad attenuates osteoarthritis in mice. Adv. Sci.10, e2300897 (2023).

    Article Google Scholar

  222. Song, E. K. et al. ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis. Sci. Transl. Med.10, eaam7486 (2018).

    ArticlePubMed Google Scholar

  223. Delco, M. L. et al. Integrin α10β1-selected mesenchymal stem cells mitigate the progression of osteoarthritis in an equine talar impact model. Am. J. Sports Med.48, 612–623 (2020).

    ArticlePubMed Google Scholar

  224. Andersen, C. et al. Human integrin α10β1-selected mesenchymal stem cells home to cartilage defects in the rabbit knee and assume a chondrocyte-like phenotype. Stem Cell Res. Ther.13, 206 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  225. Coller, B. S. et al. Monoclonal antibodies to platelet glycoprotein IIb/IIIa as antithrombotic agents. Ann. N. Y. Acad. Sci.614, 193–213 (1991).

    ArticleCASPubMed Google Scholar

  226. De Luca, G. et al. Abciximab as adjunctive therapy to reperfusion in acute ST-segment elevation myocardial infarction: a meta-analysis of randomized trials. J. Am. Med. Assoc.293, 1759–1765 (2005).

    Article Google Scholar

  227. Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G. & Hatley, R. J. D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov.21, 60–78 (2022).

    ArticleCASPubMed Google Scholar

  228. Pang, X. et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct. Target. Ther.8, 1 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  229. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer10, 9–22 (2010).

    ArticleCASPubMedPubMed Central Google Scholar

  230. Stupp, R. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol.15, 1100–1108 (2014).

    ArticleCASPubMed Google Scholar

  231. Cox, D., Brennan, M. & Moran, N. Integrins as therapeutic targets: lessons and opportunities. Nat. Rev. Drug Discov.9, 804–820 (2010).

    ArticleCASPubMed Google Scholar

  232. Cox, D. How not to discover a drug - integrins. Expert Opin. Drug Discov.16, 197–211 (2021).

    ArticleCASPubMed Google Scholar

  233. Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol.24, 495–516 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  234. Schäfer, N. & Grässel, S. Targeted therapy for osteoarthritis: progress and pitfalls. Nat. Med.28, 2473–2475 (2022).

    ArticlePubMed Google Scholar

  235. Chevalier, X. Fibronectin, cartilage, and osteoarthritis. Semin. Arthritis Rheum.22, 307–318 (1993).

    ArticleCASPubMed Google Scholar

  236. Johnson, K. et al. A stem cell-based approach to cartilage repair. Science336, 717–721 (2012).

    ArticleCASPubMed Google Scholar

  237. Karsdal, M. A. et al. Reflections from the OARSI 2022 clinical trials symposium: the pain of OA — deconstruction of pain and patient-reported outcome measures for the benefit of patients and clinical trial design. Osteoarthr. Cartil.31, 1293–1302 (2023).

    ArticleCAS Google Scholar

  238. Syx, D., Tran, P. B., Miller, R. E. & Malfait, A. M. Peripheral mechanisms contributing to osteoarthritis pain. Curr. Rheumatol. Rep.20, 9 (2018).

    ArticlePubMedPubMed Central Google Scholar

  239. Zhu, S. et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest.129, 1076–1093 (2019).

    ArticlePubMedPubMed Central Google Scholar

  240. Sroka, I. C. et al. The laminin binding integrin α6β1 in prostate cancer perineural invasion. J. Cell. Physiol.224, 283–288 (2010).

    ArticleCASPubMedPubMed Central Google Scholar

  241. Lefèvre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med.15, 1414–1420 (2009).

    ArticlePubMedPubMed Central Google Scholar

  242. Lowin, T. & Straub, R. H. Integrins and their ligands in rheumatoid arthritis. Arthritis Res. Ther.13, 244 (2011).

    ArticleCASPubMedPubMed Central Google Scholar

  243. Sharma, L. Osteoarthritis of the knee. N. Engl. J. Med.384, 51–59 (2021).

    ArticleCASPubMed Google Scholar

  244. Deveza, L. A. et al. Phenotypes of osteoarthritis - current state and future implications. Clin. Exp. Rheumatol.37, 64–72 (2019).

    PubMedPubMed Central Google Scholar

  245. Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer18, 533–548 (2018).

    ArticleCASPubMedPubMed Central Google Scholar

  246. Boer, C. G. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell184, 4784–4818.e17 (2021).

    ArticleCASPubMedPubMed Central Google Scholar

  247. Zengini, E. et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat. Genet.50, 549–558 (2018).

    ArticleCASPubMedPubMed Central Google Scholar

  248. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet.47, 856–860 (2015).

    ArticleCASPubMed Google Scholar

  249. Namba, S., Konuma, T., Wu, K. H., Zhou, W. & Okada, Y. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genomics2, 100190 (2022).

    ArticleCASPubMedPubMed Central Google Scholar

  250. Reay, W. R. & Cairns, M. J. Advancing the use of genome-wide association studies for drug repurposing. Nat. Rev. Genet.22, 658–671 (2021).

    ArticleCASPubMed Google Scholar

  251. Kang, H. et al. PharmGWAS: a GWAS-based knowledgebase for drug repurposing. Nucleic Acids Res.52, D972–D979 (2024).

    ArticlePubMed Google Scholar

  252. Giacomini, K. M. et al. Genome-wide association studies of drug response and toxicity: an opportunity for genome medicine. Nat. Rev. Drug Discov.16, 1 (2016).

    PubMedPubMed Central Google Scholar

  253. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov.16, 531–543 (2017).

    ArticleCASPubMed Google Scholar

  254. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol.21, 72–84 (2019).

    ArticleCASPubMed Google Scholar

  255. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science355, 606–612 (2017).

    ArticleCASPubMed Google Scholar

  256. Huet-Calderwood, C. et al. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat. Commun.8, 570 (2017).

    ArticlePubMedPubMed Central Google Scholar

  257. Tsunoyama, T. A. et al. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol.14, 497–506 (2018).

    ArticleCASPubMed Google Scholar

  258. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol.36, 880–898 (2018).

    ArticleCASPubMedPubMed Central Google Scholar

  259. Liu, X., Salokas, K., Weldatsadik, R. G., Gawriyski, L. & Varjosalo, M. Combined proximity labeling and affinity purification−mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat. Protoc.15, 3182–3211 (2020).

    ArticleCASPubMed Google Scholar

  260. Witze, E. S., Old, W. M., Resing, K. A. & Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods4, 798–806 (2007).

    ArticleCASPubMed Google Scholar

  261. Smith, L. M. et al. The human proteoform project: defining the human proteome. Sci. Adv.7, eabk0734 (2021).

    ArticleCASPubMedPubMed Central Google Scholar

  262. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science294, 1708–1712 (2001).

    ArticleCASPubMed Google Scholar

  263. Paggi, C. A., Teixeira, L. M., Le Gac, S. & Karperien, M. Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat. Rev. Rheumatol.18, 217–231 (2022).

    ArticlePubMed Google Scholar

  264. Li, Z. A. et al. Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol.41, 511–527 (2023).

    ArticleCASPubMed Google Scholar

  265. Smith, M. H. et al. Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis. Nat. Immunol.24, 1200–1210 (2023).

    ArticleCASPubMedPubMed Central Google Scholar

  266. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol.7, 211–224 (2006).

    ArticleCASPubMed Google Scholar

  267. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol.7, 165–176 (2006).

    ArticleCASPubMedPubMed Central Google Scholar

  268. Dwivedi-Agnihotri, H. et al. Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking, and signaling. Sci. Adv.6, eabb8368 (2020).

    ArticleCASPubMedPubMed Central Google Scholar

  269. Moreno-Layseca, P. et al. Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nat. Cell Biol.23, 1073–1084 (2021).

    ArticleCASPubMed Google Scholar

Register

We're glad to see you're enjoying Rheumatology Academy…
but how about a more personalized experience?

Register for free